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Abstract—At Fermilab, we have prototyped a GPU-accelerated 
network performance monitoring system, called G-NetMon, to 
support large-scale scientific collaborations. In this work, we 
explore new opportunities in network traffic monitoring and 
analysis with GPUs. Our system exploits the data parallelism that 
exists within network flow data to provide fast analysis of bulk 
data movement between Fermilab and collaboration sites. 
Experiments demonstrate that our G-NetMon can rapidly detect 
sub-optimal bulk data movements. 
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I.  FERMILAB G-NETMON SYSTEM DESIGN 
Fermilab is the Tier-1 Center for the Large Hadron 

Collider’s (LHC) Compact Muon Solenoid (CMS) experiment, 
as well as the central data center for several other large-scale 
research collaborations. Scientific data (e.g., CMS) dominates 
off-site traffic volumes in both inbound and outbound 
directions. At Fermilab, we have prototyped a GPU-accelerated 
network performance monitoring system (G-NetMon) for our 
large-scale scientific collaborations. In this work, we explore 
new opportunities in network traffic monitoring and analysis 
with GPUs. G-NetMon exploits the inherent data parallelism 
that exists within network flow data and uses a GPU to rapidly 
calculate transfer rates between Fermilab and collaboration 
sites in near real time. G-NetMon aims to quickly detect sub-
optimal data movement for large-scale scientific collaborations. 
A sub-optimal bulk data movement is detected if the associated 
transfer rates fall below some standard that is either predefined 
or provided by other network services.  

Our GPU-accelerated network performance monitoring 
system is deployed as shown in Figure 1. It receives flow data 
from site border routers as well as internal LAN routers. The 
routers export NetFlow V5 records. The flow data is complete, 
not sampled. 

A. System Hardware Configuraton 
Our flow-based analysis requires traffic scrutiny on a per-

flow-record basis. Fermilab is the US-CMS Tier-1 Center and 
the main data center for a few other large-scale research 
collaborations. Every hour, millions of flow records are 
generated at Fermilab border routers. Considering the 
increasing volume of scientific data created every year, coupled 
with the evolution towards to 100 GigE network technologies, 
it is anticipated that our network flow data analysis 
requirements will be increasing accordingly. Therefore, our G-
NetMon not only needs to handle current network conditions, 
but have the capability to accommodate the large growth of 
traffic expected in the near future. For now, Fermilab border 

routers generate less than 5,000,000 flow records every hour. 
Our target is to allow G-NetMon to handle 50,000,000 flow 
records per hour.  
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Figure 1 G-NetMon – Deployment 

G-NetMon is implemented in a system that consists of two 
8-Core 2.4 GHz AMD Opteron 6136 processors, two 1Gbps 
Ethernet interfaces, 32 GB of system memory, and one Tesla 
C2070 GPU. The Tesla C2070 GPU features the Fermi GPU 
architecture [1]. 

B. System Architecture 
The G-NetMon architecture is as shown in Figure 2. The 

system consists of a few parts that are executed on either the 
host (CPU) or GPU. Based on the CUDA design principle [2], 
the parts that exhibit little or no data parallelism are 
implemented as sequential CPU threads; the parts that exhibit a 
rich amount of data parallelism are implemented as GPU 
kernels. 
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Figure 2 A G-NetMon – Architecture 

 
B.1 CPU Domain 

Three CPU threads are implemented in the CPU domain. 



Site Registration Thread: it registers scientific subnets to 
our network performance monitoring system. The registered 
subnets are stored in the Site Catalog (a data buffer in host 
memory), which helps to identify scientific data transfer 
between Fermilab and collaboration sites. Large-scale research 
efforts like LHC CMS are built upon large, globally distributed 
collaborations. However, available computing and networking 
resources at different collaboration sites varies greatly. It is 
difficult to design machine-learning algorithms to 
automatically identify scientific data transfers in terms of 
traffic patterns or characteristics. Nevertheless, for a large-scale 
scientific application, the collaboration relationships between 
research institutions tend to be relatively static. In addition, the 
systems and networks assigned to a scientific application at a 
site are relatively fixed. Large-scale scientific data movement 
usually occurs between some specific subnets at each site. 
Therefore, by registering these subnets to our system, we can 
easily monitor data transfers between Fermilab and its 
collaboration sites through flow analysis of traffic between 
those subnets. 

FlowData Receiver Thread: a UDP daemon, which 
receives NetFlow V5 packets from border routers. The received 
flow records are stored in Flow Data Store (a data buffer in 
host memory). In the current implementation, Flow Data Store 
is designed to hold 50,000,000 flow records. Since a NetFlow 
V5 flow record is less than 50 Bytes, these 50,000,000 flow 
records require approximately 2.5GB of memory. Processed 
flow records in Flow Data Store are periodically cleaned and 
stored to disk to create space for subsequent network flow data. 

NetPerf Monitoring Thread: the main thread of our 
network performance monitoring system. Periodically (each 
hour), it copies Site Catalog and Flow Data Store to GPU 
memory and launches the corresponding GPU kernels to 
calculate the transfer rates between Fermilab and its 
collaboration sites. When GPU computation is completed, the 
NetPerf Monitoring Thread will synthesize the final results. A 
sub-optimal bulk data movement is detected if the associated 
transfer rates are below some predefined standard. Considering 
that TCP traffic is elastic, we use the statistics of transfer rate 
medians as our evaluation criteria. For a given site, network 
performance warnings would be issued if the associated 
median were less than 1Mbps for two consecutive hours. 

B.2 GPU Domain 

1) GPU Kernels 

In the GPU domain, we have implemented two GPU 
kernels, Catalog Kernel and TransRate Kernel. 

Catalog Kernel: it builds GPU Site Catalog, a hash table 
for registered scientific subnets in GPU memory, from Site 
Catalog. TransRate Kernel makes use of GPU Site Catalog to 
rapidly assign flow records to their respective subnets by 
examining their source or destination IP addresses. To make 
the hash table easy to implement and fast to search, all 
registered networks are transformed into /24 subnets and then 
entered in GPU Site Catalog. For the sake of scientific data 
transfer, a /24 subnet is large enough for most collaboration 
sites. Any network larger than /24 is divided into multiple 
entries in the hash table. Since GPU Site Catalog is mainly 
used for lookup operations and is rarely updated, there is no 
need to implement locks to protect unsynchronized write 

accesses. If any update is necessary, the table is rebuilt from 
scratch. 

TransRate Kernel: it calculates the transfer rates between 
Fermilab and its collaboration sites. TransRate Kernel exploits 
the inherent data parallelism that exists within network flow 
data. When GPU instantiates TransRate Kernel on a grid of 
parallel threads, each thread handles a separate flow record. On 
a C2070 GPU, thousands of flow records can be processed 
simultaneously. To handle a flow record, a TransRate thread 
first attempts to assign the flow record to its respective site and 
then calculates the corresponding transfer rates. With a hash of 
the /24 subnet of the flow record’s source or destination IP 
address, TransRate Kernel looks up the site to which the flow 
record belongs in GPU Site Catalog. Because each flow record 
includes data such as the number of packets and bytes in the 
flow and the timestamps of the first and last packet, calculation 
of transfer rate is simple. However, two additional factors must 
be considered. First, because a TCP connection is bidirectional, 
it will generate two flow records, one in each direction. In 
practice, a bulk data movement is usually unidirectional. Only 
the flow records in the forward direction reflect the true data 
transfer activities. The flow records in the other direction 
simply record the pure ACKs of the reverse path and should be 
excluded from transfer rate calculations. These flow records 
can be easily filtered out by calculating their average packet 
size, which is usually small. Second, a bulk data movement 
usually involves frequent administrative message exchanges 
between the two endpoints. A significant number of flow 
records are generated due to these activities. These records 
usually contain a small number of packets with short durations; 
their calculated transfer rates are generally of low accuracy and 
high variability. These flow records are also excluded from our 
transfer rate calculation.  

We calculate transfer rates (maximum, minimum, average, 
median) for each registered site and for each host in a 
registered site. To calculate the median statistics, we create an 
array of buckets for each host to count transfer rate frequencies. 
Each bucket represents a 10kbps interval. To save space, all 
transfer rates greater than 100Mpbs are counted in the last 
bucket. Therefore, for each host, we maintain a bucket array of 
size 10001. A bucket n represents the frequency of flow rates 
that fall within the interval [n*10kbps (n+1)*10kbps]. From the 
resulting bucket counts we determine the host and site medians. 
We use atomic CUDA operations to calculate and store all 
transfer rates in order to prevent unsynchronized data accesses 
by the threads. 

2). GPU Kernel Optimization 

The Catalog Kernel is relatively simple, with few 
opportunities for optimization. In fact, its functionality could be 
included in TransRate Kernel. However, because the overhead 
to launch a kernel is negligible [3], we have chosen to 
implement it as an independent kernel to preserve a modular 
design.  

Our TransRate kernel is optimized using various 
approaches: 
• Register Spilling Optimization. Without this optimization, 

a TransRate thread will use 47 registers. These registers 
hold compiler-generated variables. Because registers are 
in-chip memories that can be accessed rapidly, a single 



thread’s performance increases if registers are readily 
available. However, when we used the CUDA Occupancy 
Calculator [1] to measure SM occupancy with varying 
block sizes, to our surprise, the occupancy rates were 
unacceptably low (Table 1). At such a low SM occupancy, 
the overall GPU performance would be greatly degraded. 
The improvement in each single thread cannot make up for 
the loss in overall thread parallelism. To raise GPU 
occupancy, we limit the maximum number of registers 
used by TransRate to 20 by compiling this kernel with the 
“-maxrregcount 20” option. As shown in Table 1, this 
register spilling optimization is effective, and the best 
GPU occupancy achieved as the number of threads per 
block is varied is now 100%. 

• Shared memory. Shared memories are on-chip memories 
and can be accessed at very high speed in a highly parallel 
manner. The TransRate kernel makes use of shared 
memory as much as possible to accelerate flow data 
processing.  

• Non-caching Load. Fermi architecture global memory has 
two types of loads, caching and non-caching. The caching 
load is the default mode. It first attempts to load from L1 
cache, then from L2 cache, and finally from the global 
memory. The load granularity is 128 bytes. The non-
caching load first attempts to hit in L2, and then the global 
memory. Its load granularity is 32 bytes. Our experiments 
show that non-caching load can boost the performance by 
at least 10%, and so the optimized TransRate kernel uses 
non-caching load to access Flow Data Store. 

Table 1 SM Occupancy Rates at Different Kernel Block 
Sizes 

Thread Size per Block 64 128 256 512 
SM Occupancy Rates @ 

Register/Thread=47 33% 42% 33% 33% 

SM Occupancy Rates @ 
Register/Thread=20 33% 67% 100% 100% 

 

II. EXPERIMENTAL EVALUATION 

A. Performance Evaluation 
At present, Fermilab border routers produce fewer than 

5,000,000 flow records in an hour. However, our G-NetMon 
system is designed to handle a maximum load of 50,000,000 
flow records per hour. To evaluate the capabilities and 
performance of our system at such a network load, we collected 
more than a day’s flow records from the border routers and fed 
G-NetMon with 50,000,000 flow records. FlowData Receiver 
Thread receives these flow records and stores them in Flow 
Data Store. We also select the top 100 /24 scientific subnets 
that transfer to and from Fermilab in terms of traffic volume, 
and register them with Site Catalog. 

To calculate transfer rates between Fermilab and 
collaboration sites, it is first necessary to assign flow records to 
their respective sites. G-NetMon implements a hash table to 
perform this function. We have also implemented a Non-Hash-
Table method (i.e., sequential search) in which all of the 
registered scientific subnets are maintained in a sequential list. 

To categorize a flow record, the TransRate kernel searches the 
list one by one until a matching site, or none, is found.  The G-
NetMon variant with the Non-Hash-Table method is termed as 
NHT-G-NetMon 

A.1 GPU vs. CPU 
 In order to evaluate how GPU can accelerate network flow 
data processing in high-bandwidth network environments, we 
compare G-NetMon with its corresponding CPU 
implementations. We implemented two CPU variants, which 
are termed H-CPU and NH-CPU, respectively. Like G-
NetMon, H-CPU applies a hash table mechanism to rapidly 
assign flow records to their respective sites and then calculates 
the corresponding transfer rates. In contrast, NH-CPU 
implements a similar Non-Hash-Table method (sequential 
search) as NHT-G-NetMon, in which all of the registered 
scientific subnets are maintained in a sequential list. To assign 
a flow record, CPU searches the list one by one until a 
matching site, or none, is found. We ran each of H-CPU and 
NH-CPU on a single 2.4 GHz AMD Opteron 6136 core, with 
the same set of data as used above. We make the comparisons 
of G-NetMon vs. H-CPU and NHT-G-NetMon vs. NH-CPU. 
The results are shown in Figure 3. It takes H-CPU 4916.67 ms 
to handle 50,000,000 flow records; in contrast, G-NetMon 
requires 900ms. For the non-hash-table variants, NH-CPU and 
NHT-G-NetMon take 36336.67 ms and 1098.23 ms, 
respectively. The comparisons clearly show that GPU can 
significantly accelerate the flow data processing, by a factor of 
5.38 (G-NetMon vs. H-CPU), or by a factor of 33.08 (NHT-G-
NetMon vs. NH-CPU). The reason that we present the 
comparison of GPU vs. CPU for the non-hash-table 
implementations is because many network applications feature 
a similar sequential search computation pattern as our non-
hash-table implementations. For example, a network security 
application needs to examine each packet or flow with security 
rules one by one. The experiment results show GPU can 
significantly accelerate the data processing. 
 

 
 

Figure 3 G-NetMon vs. CPU 

A.2 Receiving Flow Records 
 G-NetMon receives NetFlow V5 packets from border routers 
via UDP. The received flow records are stored in Flow Data 
Store. A NetFlow V5 flow record is 48 bytes. A 1500-byte 
UDP packet, the largest allowed by standard Ethernet at the 
network, can transmit at most 30 flow records. Our G-NetMon 



system is designed to handle a maximum load of 50,000,000 
flow records per hour. Therefore, the FlowData Receiver 
thread needs to handle at least 463 packets per second, which 
amounts to an average traffic load of 5.56Mbps. Our G-
NetMon system can easily handle such a traffic load. However, 
because the flow records are transmitted via UDP, if CPU is 
busy with other tasks and the FlowData Receiver thread is not 
scheduled to handle the NetFlow traffic in time, the incoming 
packets can be dropped when the UDP receive buffer is full. 
We have run experiments to verify this scenario. In the 
experiments, the FlowData Receiver thread was assigned to 
share a core with a CPU-intensive application and the UDP 
receive buffer size was set to 4MB. We then sent it UDP traffic 
at varying rates, ranging from 100Mbps to 1Gbps, for 0.5 
seconds. When the UDP traffic rates reached 500Mbps or 
above, serious packet loss would occur. We repeated the above 
experiments with the FlowData Receiver thread assigned a 
dedicated core. No packet loss was detected. Therefore, to 
avoid the situation of NetFlow packets being dropped, G-
NetMon assigns a dedicated core for the FlowData Receiver 
thread to handle NetFlow traffic.    

B. Network Performance Monitoring 
 We have registered 100 /24 scientific subnets that transfer to 
and from Fermilab in G-NetMon. G-NetMon monitors the bulk 
data movement status between Fermilab and these subnets by 
calculating the corresponding data transfer statistics every hour. 
G-NetMon calculates the transfer rates (maximum, minimum, 
average, median) for each registered site and for each host in a 
registered site. Figure 4 gives the data transfer rates in an hour 
between Fermilab and a collaboration site.  
 A sub-optimal bulk data movement is detected if the 
associated transfer rate falls below a predefined standard. 
Considering that TCP traffic is elastic and network conditions 
are volatile, we use the statistics of transfer rate medians as our 
evaluation criteria. For a given site, network performance 
warnings would be issued if the associated median were less 
than 1Mbps for two consecutive hours.  
 To evaluate the effectiveness of G-NetMon in detecting sub-
optimal bulk data movements, we investigated the G-NetMon 
warnings for a period of two weeks. During this period, G-
NetMon issued performance warnings for 7 sites in total (there 
were multiple warnings for the same sites). For those sites that 
G-NetMon issued warnings, we contacted their network 
administrators to conduct end-to-end performance analysis. 

Five sites responded to our requests. The end-to-end 
performance analysis indicated poor network conditions 
between these sites and Fermilab. To our surprise, one site in 
Greece is even connected to the outside world with a 100 Mbps 
link. The investigation of these warnings demonstrated that our 
G-NetMon can effectively detect sub-optimal bulk data 
movements in a timely manner. G-NetMon can detect a sub-
optimal bulk data movement in two hours. 

III. CONCLUSION & DISCUSSION 
 At Fermilab, we have prototyped a GPU-accelerated network 
performance monitoring system for large-scale scientific 
collaborations, called G-NetMon. Our system exploits the 
inherent data parallelism that exists within network data flows 
and can rapidly analyze bulk data movements between 
Fermilab and its collaboration sites. Experiments demonstrate 
that our G-NetMon can detect sub-optimal bulk data movement 
in time. 
 The main purpose of this work is to explore new 
opportunities in network traffic monitoring and analysis with 
GPUs. The experiment results show that GPU can significantly 
accelerate the flow data processing, by a factor of 5.38 (G-
NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-NC-GPU 
vs. NH-CPU). At present, G-NetMon is designed to detect sub-
optimal bulk data movements. In the future, we will enhance it 
with security features. To implement security features, G-
NetMon needs to examine flow records with security rules one 
by one in real time or semi-real time, which require more 
computation capabilities. The computation pattern of 
examining flow records with security rules one by one is 
similar to that of the non-hash-table implementations discussed 
in the paper, in which GPU can significantly accelerate the 
flow data processing. 

REFERENCES 
                                                             

[1] www.nvidia.com  
[2]  D. B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel 

Processors: A Hands-on Approach, Morgan Kaufmann Publishers 
Inc. ISBN: 0123814723 9780123814722 

[3] S. Han, K. Jang, K. Park, S. Moon, “PacketShader, a GPU-
Accelerated Software Router,” In Proceedings of SIGCOMM’10, 
New Delhi, India. 

 
Figure 4 Transfer rates between Fermilab and a Collaboration Site 


